Characterization of hydroxyapatite containing micro-arc oxidation coating on ZK60 magnesium alloy

نویسندگان

  • X Lin
  • LL Tan
  • C Liu
  • X Wang
  • K Yang
چکیده

INTRODUCTION: Magnesium alloys are attractive as a class of biodegradable metallic materials. However, too fast degradation is an obstacle to their clinical applications. Recently, micro-arc oxidation (MAO) coatings were applied on biodegradable magnesium alloys to delay their degradation. In vivo studies showed that the protective ability of the MAO coating should be further improved [1]. Sealing the micro-pores of the MAO coating is a promising way to improve the corrosion resistance of the coating [2]. In the present study, hydroxyapatite nano-particles (HAnp) were added into the MAO electrolyte considering the biocompatibility of the HA. The corrosion resistance and cell compatibility of the coatings prepared in the electrolyte with and without HAnp were characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications

Magnesium and its alloys--a new class of degradable metallic biomaterials-are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this...

متن کامل

Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The p...

متن کامل

Effect of coating time on the corrosion behavior of ceramic coatings containing hydroxyapatite nanoparticles by plasma electrolytic oxidation method on AZ31 Mg alloy in simulated body fluid

In this study, the effect of coating time on the microstructure and corrosion behavior of AZ31 Mg alloy coated by plasma electrolytic oxidation (PEO) method has been investigated. For this purpose, phosphate-based electrolyte containing hydroxyapatite nanoparticles was used at different times of 5, 10 and 15 minutes. The surface properties and chemical composition of the coatings were investiga...

متن کامل

Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy

The purpose of this work is to improve the cytocompatibility and corrosion resistance of magnesium alloy in the hope of preparing a biodegradable medical material. The aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite coating was successfully prepared on AZ31 magnesium alloy surface with a sol-gel spin coating method and biomimetic mineralization. Potentiodynamic polarization te...

متن کامل

Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone)–poly(ethylene glycol) bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013